треугольник АВС вписан в окружность с центром О и радиусом 4 найдите площадь треугольника ВОС, если угол В=40 гр, угол С=35гр

треугольник АВС вписан в окружность с центром О и радиусом 4 найдите площадь треугольника ВОС, если угол В=40 гр, угол С=35гр

  • угол А=180-40-35=105гр, тогда хорда ВС видна из центра описанной окружности под углом 360-2*105=150гр (т.к. треугольник АВС тупоугольный, то О лежит вне треугольника)

    т.о. в треугольнике ВОС угол О=150гр, ОВ=ОС=4, т.о. площадь ьреугольника равна

    S=0,5*4*4*sin 150= 8*sin 30=8*0,5=4

  • В треугольнике АВС угол А = 180-40-35=105 градусов.

    Он опирается на дугу СВ, которая равна 105*2=210 градусов, следовательно дуга САВ равна 360-210=150 градусов. Центральный угол СОВ = 150 градусов.

    Треугольник СОВ равнобедренный с боковыми сторонами R=4

    По формуле приведения sin(180-)=sin

    Площадь треугольникаS =RsinCOB= 16/2*sin150 = 16/2*sin30 = 8*0,5= 4