все стороны прямоугольного треугольника с катетами 6 и 8 касаются сферы, центр которой удален от плоскости треугольника на 4 см Найдите площадь

все стороны прямоугольного треугольника с катетами 6 и 8 касаются сферы, центр которой удален от плоскости треугольника на 4 см Найдите площадь

  • Проверенные ответы содержат наджную, заслуживающую доверия информацию, оценнную командой экспертов. На «Знаниях» вы найдте миллионы ответов, правильность которых подтвердили активные участники сообщества, но Проверенные ответы — это лучшие из лучших.

1. Делаем сечение сферы плоскостью, содержащей прямоугольный треугольник. Это сечение — окружность, вписанная в треугольник.

2. Стороны прямоугольного треугольника (6,8,10), радиус вписанной в него окружности (6 + 8 — 10)/2 = 2.

3. Из центра этой окружности проводим перпендикуляр к плоскости треугольника. Ясно, что любая точка этой прямой равноудалена от точек окружности в сечении. Поэтому центр сферы тоже лежит на ней.

4. Радиус сферы, радиус окружности и отрезок перпендикулярной к плоскости сечения прямой, концами которого являются центры сферы и окружности, образуют прямоугольный треугольник с катетами 2 и 4. Поэтому, если обозначить радиус сферы R, то R^2 = 2^2 + 4^2 = 4 + 16 = 20;

5. Площадь сферы равна 4*pi*R^2 = 4*20*pi = 80*pi;

  • 1. Изобразите прямую a и точки A, B и C, не принадлежащие данной прямой. Сделайте необходимые записи.

    2. Изобразите плоскость b, точки E, F, принадлежащие ей, и точку G, ей не принадлежащую. Сделайте необходимые записи.

    3. Изобразите прямую a, лежащую в плоскости a. Сделайте необходимую запись.

    4. Изобразите две пересекающиеся плоскости a и b. Сделайте необходимую запись.




  • Оценка статьи:
    1 Star2 Stars3 Stars4 Stars5 Stars (No Ratings Yet)
    Загрузка...
    Поделиться с друзьями:
    Плюсануть
    Поделиться
    Отправить
    Класснуть
    Линкануть
    Запинить
    Ссылка на основную публикацию